
J. Fluid Mech. (2010), vol. 647, pp. 125–142. c© Cambridge University Press 2010

doi:10.1017/S0022112010000078

125

Regimes of thermocapillary migration of
droplets under partial wetting conditions

J. M. GOMBA† AND G. M. HOMSY
Department of Mechanical Engineering, University of California, Santa Barbara,

California 93106-5070, USA

(Received 24 June 2009; revised 18 December 2009; accepted 28 December 2009)

We study the thermocapillary migration of two-dimensional droplets of partially
wetting liquids on a non-uniform heated substrate. An equation for the thickness
profile of the droplet is derived by employing lubrication approximations. The model
includes the effect of a non-zero contact angle introduced through a disjoining–
conjoining pressure term. Instead of assuming a fixed shape for the droplet, as
in previous works, here we allow the droplet to change its profile with time. We
identify and describe three different regimes of behaviour. For small contact angles,
the droplet spreads into a long film profile with a capillary ridge near the leading
edge, a behaviour that resembles the experiments on Marangoni films reported
by Ludviksson & Lightfoot (Am. Inst. Chem. Eng. J., vol. 17, 1971, pp. 1166). For
large contact angles, the droplet moves as a single entity, weakly distorted from its
static shape. This regime is the usual one reported in experiments on thermocapillary
migration of droplets. We also show some intriguing morphologies that appear in the
transition between these two regimes. The occurrence of these three regimes and their
dependence on various parameters is analysed.

1. Introduction
The spreading of liquids on rigid surfaces and inside channels is of interest in

a variety of applications such as coating processes and microfluidic devices (Oron,
Davis & Bankoff 1997; Stone, Stroock & Ajdari 2004; Darhuber & Troian 2005).
Coating processes are usually performed by the application of a body force, such as
gravity or centrifugal force, or by using external thermal gradients (Huppert 1982;
Cazabat et al. 1990; Ehrhard & Davis 1991; Sur, Witelski & Behringer 2004; Gomba
et al. 2005). In microfluidic devices, the actuation of very small droplets can be
accomplished in many different ways such as pneumatic pumping, centrifugation,
thermocapillarity and electrowetting, and these have been used successfully to drive
flows both in closed channels and on open surfaces (Ho & Tai 1998; Gallardo et al.
1999; Sammarco & Burns 1999; Pollack, Fair & Shenderov 2000; Darhuber et al. 2003;
Sur, Bertozzi & Behringer 2003; Valentino et al. 2003). These forces also play a key
role in the control of bubbles and droplets in a large number of experiments aboard
spacecraft, where the effect of gravity is negligible (Subramanian & Balasubramanian
2001).
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Here we will focus on the thermocapillary actuation of liquids on horizontal
surfaces. A temperature gradient in the substrate produces, in turn, a temperature
gradient at the liquid–air surface, inducing a surface tension gradient that exerts a
hydrodynamic force that moves the droplet from warmer to colder regions. Following
the pioneering work of Bouasse (1924), who made drops climb a tilted wire by
heating its lower end, many authors have studied the thermocapillary migration of
droplets. The experimental studies of Brzoska, Brochard-Wyart & Rondelez (1993)
and Chen et al. (2005) are relevant here. Both sets of experiments study the motion
of droplets on horizontal silicon surfaces. The set-up employed assures a constant
temperature gradient at the substrate and a constant stress at the liquid–air interface.
Interestingly, in these experiments the droplets move with a constant velocity and
a fixed shape. Brzoska et al. (1993) employ polydimethylsiloxane (PDMS) on a
hydrophobic surface, with measured contact angles 11◦ � θ � 13◦. The dependence of
the contact angle with temperature T is experimentally found to be negligible, typically
(1/θ)(dθ/dT ) ≈ 10−2K−1. They conclude that contact angle hysteresis is responsible
for the droplet pinning when the thermal gradient imposed on the substrate is below
a threshold, as predicted by Ford & Nadim (1994). Above this critical value, the
velocity of the droplet is proportional to the temperature gradient and inversely
proportional to the viscosity. This suggests that the capillary number, considered as a
dimensionless speed, is constant, as is appropriate to Stokes flow. Chen et al. (2005)
employ organic liquids and also check that, for a given volume of fluid, there is a
critical temperature gradient below which the droplet does not move. They compare
the experimental results with the predictions from a theoretical expression derived
following Ford & Nadim (1994) and find that the fitting of the experimental values
is more sensitive to contact angle hysteresis than to the magnitude of the slip length.

Recently, Pratap, Moumen & Subramanian (2008) reported experiments of decane
droplets on a PDMS-coated surface. In contrast with previous experimental works,
here the contact angle is very sensitive to the temperature, changing from 3◦ to 8◦

when the temperature is changed from 15◦ to 50◦C. Furthermore, evaporation is not
negligible in their experiments, resulting in a loss of mass that reduces the velocity
of the droplet with time. These two effects, the dependence of the contact angle with
temperature and evaporation, are not considered in our work and so our results will
not be applicable to these experiments.

Marangoni wetting films climbing a plate against gravity by thermally induced
surface-tension gradients constitute another example of thermocapillary actuation of
fluid (Ludviksson & Lightfoot 1971; Teletzke, Davis & Scriven 1987; Kataoka &
Troian 1998; Schwartz 2001). The main difference between this and the ‘constant-
volume’ droplet problem is that in Marangoni films there is a continuous pumping
of fluid from a container towards the advancing front. The typical liquid profile is
characterized by a long film connecting the bulk of fluid with a capillary ridge formed
at the leading edge. Ludviksson & Lightfoot (1971) studied the evolution of these
films and found that the substrate is coated at a constant rate. The discrepancies
between the calculated velocity and experimental values, by up to 40 % in one case,
were analysed by Teletzke et al. (1987) and Kataoka & Troian (1998), who developed
a lubrication model to predict both the velocity and shape of the film. Schwartz (2001)
extended these studies by including the effect of partial wetting in order to predict the
critical contact angle that stops the flow. As we shall see, these Marangoni film-type
profiles will be relevant to the drop migration problem in certain parameter ranges.

These experiments can lead one to conclude falsely that the only difference between
the dynamics of droplet and Marangoni films flows is that the former conserves the
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mass while the latter does not. However, the fact that the experiments in Marangoni
film flows are performed using wetting fluids while the actuation of droplets is
typically carried out for partially wetting liquids suggests that wettability may play
an important role. In order to examine this point, we present results on the study
of the effect of non-zero contact angle θ (partial wettability) on the thermocapillary
actuation of droplets. In particular, we discover important differences in flows with
low and high contact angle.

Many authors have studied thermocapillary flows involving droplets on solids
theoretically. The problem is usually simplified to the study of a two-dimensional
droplet under the influence of a shear stress at the liquid–air interface, the flow being
solved within the lubrication theory. Steve Davis and his collaborators have done
much to develop this approach and to use it to understand fundamental aspects
of liquids spreading on isothermal and non-isothermal substrates. Ehrhard & Davis
(1991) studied the spreading of liquids driven by a mismatch between the initial
and equilibrium contact angles. Using lubrication theory, they were able to account
for a variety of physical effects, including thermocapillarity which is of interest in
this paper. They considered the spreading of a droplet when the temperature of the
substrate, Tw , is higher, the same or lower than the temperature of the surrounding air,
T∞. Assuming a finite thermal resistance at the air–liquid interface, they found that
for Tw >T∞ the Marangoni stress slows the spreading when compared with the case
Tw = T∞, and vice versa for Tw <T∞. Since there is no overall temperature gradient,
the Marangoni stresses do not migrate the droplet, which is our interest here. A later
study by Anderson & Davis (1995) extended these concepts to the case of symmetric
spreading due to a combination of thermocapillarity and evaporation.

Models of thermocapillary migration of droplets have been developed by Brochard
(1989), Ford & Nadim (1994) and Smith (1995). Brochard (1989) analyses the motion
of droplets on solid surfaces when the displacement of the fluid is achieved by either
chemical or thermal gradients. She assumes a negligible deformation of the shape of
the droplet, which is further approximated as a wedge. These hypotheses allow her to
compute the force exerted on the droplet and, from that, the velocity of displacement.
In order to avoid the divergent stress at the contact line, the integration of the force
is done up to a point close, but not all the way, to the contact line. Ford & Nadim
(1994) generalize the work of Brochard (1989) to droplets with any arbitrary (fixed)
shape and allow different contact angles at the leading and rear fronts. The divergence
of the stress is avoided by allowing slip at the contact line. The velocity is assumed to
be constant and the derived analytical expression predicts that the difference between
the rear and leading contact angle is responsible for the existence of a threshold
depinning force. Smith (1995) also treats the thermocapillary migration of a two-
dimensional droplet assuming a Navier slip condition but, in addition, he applies a
dynamic boundary condition that relates the actual contact angle with the contact
line speed (Dussan 1979). Considering flows in the limit of zero capillary numbers,
he identifies two steady-state solutions: one corresponding to a pinned droplet with
a circulation flow and the other consisting of a droplet translating with constant
velocity and shape.

Our objectives are to understand the effect of contact angle and Marangoni number
on the regimes of behaviour for migration of drops, and to establish the connection,
if any, between Marangoni films and drop migration.

The article is organized as follows. In § 2 we explain the assumptions used in the
modelling and derive a general evolution equation for the thickness h. Some details
of the numerical procedure employed to solve the equation are given in a subsection.
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Figure 1. Scheme of a two-dimensional droplet on a substrate. The temperature on the
substrate linearly decreases from left to right.

An improvement on previous theoretical analyses is that here, instead of considering
a droplet moving with a constant velocity and a steady shape as usually assumed, we
solve an initial value problem for the thickness h and motion of the droplet, imposing
restrictions neither on the velocity of both the contact lines and the drop nor on the
drop shape. In § 3 we describe the regime for small contact angles, characterized by a
continuous elongation reminiscent of Marangoni films. A self-similar solution for the
shape of the droplet is presented and compared with the profile obtained by solving
the full equation for h. In § 4 we find a second regime for large contact angles in which
the droplet keeps a steady shape. In this regime, the droplet velocity is constant and
the dependence with the various parameters of the flow is explored. The behaviour
of the droplet for intermediate values of contact angle is presented in § 5. Section 6
concerns the dependence of the regime maps on the droplet size and the temperature
gradient.

2. Formulation
We use standard lubrication theory which reduces the Navier–Stokes equations to

a single evolution equation for the thickness h(x, t). Although strictly valid for small
slope (vanishing contact angles), lubrication theory has proved to be qualitatively,
and in some cases, quantitatively correct well outside its formal region of validity.
Comparisons between full Stokes flow simulations and lubrication theory, together
with discussions of its use for partial wetting conditions, can be found in Mitlin &
Petviashvili (1994); Schwartz (1998); Schwartz & Eley (1998); Perazzo & Gratton
(2004); Chen et al. (2005); Gotkis et al. (2006); Diez & Kondic (2007). Thus, in spite
of the approximations of lubrication theory, it remains the convenient method of
choice for an exploration of the qualitative nature of solutions.

Consider a two-dimensional droplet deposited on a horizontal substrate which is
subject to a constant temperature gradient, as shown in figure 1. The velocity u(x, z, t)
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in the x direction is related to the pressure p by

∂p

∂x
= μ

∂2u

∂z2
, (2.1)

where μ is the viscosity of the liquid and p is given by

p = −γ
d2h

dx2
− �. (2.2)

Here, γ is the surface tension and � is the disjoining–conjoining pressure defined by

� = κ

[(
h∗

h

)n

−
(

h∗

h

)m]
, (2.3)

where

κ =
S(m − 1)(n − 1)

(n − m)h∗
, (2.4)

h∗ is the thickness of the energetically favoured molecular film (Churaev & Sobolev
1995; Glasner & Witelski 2003; Gomba & Homsy 2009) and S is the spreading
parameter. The use of a disjoining–conjoining model for the molecular interactions
between fluid and substrate has been discussed by Mitlin & Petviashvili (1994)
and Schwartz & Eley (1998). Its use here has several advantages over previous studies
of drop migration, the most important of which are as follows: (i) elimination of
the need to model the dynamic contact angle and the singularity with the no-slip
condition due to the presence of a precursor film (as a result of the favourable
interaction) and (ii) the ability of the model to prescribe an apparent contact angle as
an independent parameter. The spreading parameter S can be related to the contact
angle θ via the Laplace–Young condition as S = γ (1 − cos θ) (Schwartz & Eley 1998).

In the usual fashion, the surface tension γ is taken to be linear in the temperature
T at the air–liquid interface

γ = γ0 − σ (T − T0), (2.5)

with γ0 being the surface tension at T = T0 and σ being a positive constant.
The velocity u(x, z, t) is subject to the boundary conditions of no slip and the

tangential stress condition, respectively:

u(x, 0, t) = 0, (2.6)

μ
∂u

∂z

∣∣∣∣∣
z=h

=
dγ

dx
≡ dγ

dT

dT

dx

∣∣∣∣∣
z=h

. (2.7)

In order to relate the unknown temperature T at the interface to the known
temperature profile at the substrate, Ts , we adopt two common assumptions (Brochard
1989; Ford & Nadim 1994). The first is that conduction is the main heat transfer
mechanism within the drop, i.e. the Péclet number, Pe = hcU/α, is small. Under this
assumption the temperature profile inside the droplet is linear in z (Ehrhard & Davis
1991) and the temperature at the surface is given by

T (x, h) =
Ts(x)

1 + Bih
. (2.8)

Here, Bi = qshc/kl is the Biot number, where qs is the surface heat transfer coefficient
at the air–liquid interface and kl is the conductivity coefficient of the liquid. The second
assumption is that Bi h � 1, which is realistic for most experiments (Cazabat et al.
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1990; Brzoska et al. 1993; Sur et al. 2003, 2004; Chen et al. 2005): for example,
values of Bi are estimated by Chen et al. (2005) to be between 0.02 and 0.06 for their
experiments. Thus, T (x, h) = Ts(x). Consistent with the experiments of Brzoska et al.
(1993) and Chen et al. (2005), we prescribe a linear dependence of Ts with x, and so
the boundary condition (2.7) becomes

μ
∂u

∂z

∣∣∣∣∣
z=h

= τ, (2.9)

where τ = (dγ /dTs)(dTs/dx) is a constant.
Determining the velocity u by integrating (2.1) subject to the boundary conditions

(2.6) and (2.7) and applying conservation of mass results in the following standard
equation for the thickness h:

∂h

∂t
+

γ

3μ

∂

∂x

(
h3 ∂3h

∂x3

)
κ

3μ

∂

∂x

(
h3 ∂

∂x

[(
h∗

h

)n

−
(

h∗

h

)m])
+

τ

2μ

∂h2

∂x
= 0. (2.10)

This is the generic thin film equation for flow driven by a constant shear stress
τ (Eres, Schwartz & Roy 2000). Defining the dimensionless variables x̂ = x/xc,
ĥ =h/hc and t̂ = t/tc with tc = 3μx4

c /(γ h3
c) and taking (n, m) = (3, 2) (Glasner &

Witelski 2003; Diez & Kondic 2007), (2.10) becomes

∂h

∂t
+

∂

∂x

(
h3 ∂3h

∂x3

)
+ K

∂

∂x

(
h3 ∂

∂x

[(
h∗

h

)3

−
(

h∗

h

)2
])

+ B
∂h2

∂x
= 0, (2.11)

where we have dropped the hats for simplicity. The parameters K and B are defined
as

K =
2(1 − cos θ)

h∗

x2
c

h2
c

,

B =
3τ

2γ0

x3
c

h2
c

,

⎫⎪⎪⎬
⎪⎪⎭ (2.12)

with h∗ in units of hc. At this point we have some freedom to choose the length scales
hc and xc. While there appears to be three parameters, K, B and h∗, by using the
intrinsic scales employed by Schwartz, Roux & Cooper-White (2005) (in a slightly
different context), or those of Gomba & Homsy (2009), it is possible to reduce
the number of dimensionless parameters to two. But for ease of comparison with
experimental data, we define hc = xc = a, where a =

√
γ0/ρg is the capillary length.

We mention the simplifications associated with using intrinsic scales below when
appropriate.

2.1. Computational issues

We discretize (2.11) in space using regular centred finite differences except for
the fourth-order term, for which central differencing does not necessarily preserve
the positivity of the solution, i.e. h can evolve from positive to negative values
(Bernis, Peletier & Williams 1992; Beretta, Berstch & Passo 1995). Accordingly, we
implement a ‘positivity preserving scheme’ proposed by Zhornitskaya & Bertozzi
(2000). The resulting system of equations are evolved in time by employing a
synchronized marching Crank–Nicholson scheme combined with an adaptive time
stepping procedure (Gomba et al. 2007). The corresponding pentadiagonal matrix is
solved by using routines extracted from Press et al. (1992; the routines used in this
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work are ‘bandec’ and ‘banbks’), and the boundary conditions at both extremes of
the domain, x = 0 and x = L, are

dh

dx

∣∣∣∣∣
x=0,L

=
dh3

dx3

∣∣∣∣∣
x=0,L

= 0. (2.13)

We note that any attempt to quantitatively reproduce experimental conditions
requires the choice of an appropriate value for the dimensional molecular film
thickness, h∗hc, which typically is of the order of 10 nm. On the other hand, it is
well known that the space step �x must be of the same order of h∗ (Schwartz &
Eley 1998; Diez & Kondic 2001). If the length of the domain is about 10 cm, the
mesh would consist of 108 collocation points. This large number results in long time-
consuming calculations even when carried out on fast workstations. As an example of
the computing times, a case with dimensionless cross-sectional area A= 10, h∗ = 0.005,
θ =30◦ and �x = 0.01 in a domain of dimensionless length L =100 required 4 days to
be solved on an Intel Xeon CPU 3.60 GHz processor. The time increases even more
for lower values of h∗ or larger values of θ . With the aim of spending reasonable
computing times, most cases were solved with h∗ � 5 × 10−3, and �x = 0.01. Even
though this range of h∗ is not a realistic value, we will show that it allows us to
reproduce the features reported in experiments. We also did a modest parameter
study to find that the dependence of the results on h∗ is much weaker than that of
other parameters.

In order to establish relevant values of the parameter B , we recall the experimental
conditions reported by Brzoska et al. (1993) and Chen et al. (2005). In those
experiments, the ranges of values for the quantities involved in the definition of
B are: 20 × 10−3 Nm−1 � γ � 30 × 10−3 Nm−1, 0.05 × 10−3 Nm−1 ◦C � dγ /dT � 0.1 ×
10−3 Nm−1 ◦C and 3.5◦C cm−1 � dTs/dx � 36◦Ccm−1. Thus, the parameter B can be
considered to be in the interval (0.002 − 0.03).

We also estimate the cross-sectional area of the ‘three-dimensional’ droplets in the
experiments of Brzoska et al. (1993) and Chen et al. (2005) by considering the section
at the symmetry plane that crosses the point of maximum thickness. This gives us
an idea of the cross-sectional area to use in our ‘two-dimensional’ problem. For a
three-dimensional droplet with a radius R, measured at the liquid–substrate interface,
this area is given by

A = R2 (θ/ sin θ − cos θ) / sin θ. (2.14)

Accordingly, the dimensionless cross-sectional area in the experiments of Brzoska
et al. (1993) can be estimated to be within the range 0.18 � A � 6.3. The experiments
of Chen et al. (2005) also fall within that range, typically 0.34 � A � 0.4.

In the next three sections, we describe the different regimes we observe by first
fixing all dimensionless parameters but θ at the following values: A= 10, B = 0.01
and h∗ = 0.01. The initial condition always corresponds to the shape of a static droplet
of area A when the temperature gradient is zero (Gomba & Homsy 2009), and we
then follow the evolution after a step increase in the value of B .

3. Film regime: small contact angle
Figure 2 presents the numerical solution of (2.11) for a small contact angle, θ =5◦,

which shows that the leading front moves faster than the rear one, thus the width
increases with time. Interestingly, after a transient stage, the bulk region exhibits
a linear profile with a slope that decreases in time, and the leading edge shows a
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Figure 2. Evolution of the thickness profile obtained by solving (2.11) (solid lines) and the
asymptotic profiles given by (3.5) (dashed lines). The profiles correspond to the case with
θ = 5◦, A = 10, B = 0.01 and h∗ = 0.01.

characteristic capillary ridge. Such behaviour is similar to what is seen in Marangoni
films:hence we refer to this as the film regime.

The behaviour away from the leading and trailing edges can be captured by a
simple self-similar solution. On the one hand, the small value of θ suggests that
the disjoining–conjoining pressure is negligible. On the other hand, the numerical
solution shows that the curvature in the bulk region is small and therefore the
capillary pressure term is also negligible. Dropping both terms, (2.11) becomes

∂h

∂t
+ B

∂(h2)

∂x
= 0. (3.1)

We seek a self-similar solution of the following form (Barenblatt 1996)

h = tpH (ζ ), (3.2)

x = ζ xN, (3.3)

where xN = tq is the position of the leading front and p, q are constants. Requiring
that time enters only in the form given in (3.2) and (3.3) and that the volume remains
constant, the power law exponents are found to be q = − p = 1/2. As a consequence,
(3.1) becomes

−
(

H + ζ
dH

dζ

)
+ 2B

dH 2

dζ
= 0. (3.4)

Integrating, applying the condition H (0) = 0, and recovering the original variables,
we find:

h =
x

2Bt
for xR � x � xA. (3.5)

Here the positions for the rear and advancing fronts, xR and xA, are given by

xR = x0 + 2hfilmBt,

xA = xR +
√

4ABt.

}
(3.6)
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Figure 3. Evolution of (a) w and (b) xR for different combinations of B , A and θ . The grey
lines represent the asymptotic power law predicted by (3.8) and (3.6), respectively.

Considering that the area A of the droplet is given by the area of the triangle defined
in (3.5) and introducing the notation hA = xA/2Bt and hR = xR/2Bt , it is possible to
write

A =
w(hA − hR)

2
=

w2

4Bt
, (3.7)

from where the width w = xA − xR of the droplet is given by

w = (4ABt)1/2. (3.8)

Figure 2 shows the comparison of the complete profile with the asymptotic profile
defined by (3.5) and (3.6). There is a reasonably good prediction of the slope of
the profile in the bulk region away from the capillary ridge. Despite the fact that
the experimental literature does not report cases with this particular contact angle,
experiments carried out by Sur et al. (2003) for Marangoni films of wetting liquids
have shown, at least in one case, a linear profile connecting the advancing ridge with
the fluid in the container (see figure 5 in Sur et al. 2003).

In figure 3(a,b) we show the evolution of w and xR for different values of A and
θ . Notice that, in general, w reaches the asymptotic law given in (3.6) faster than xR .
The delay in xR in approaching the asymptotic behaviour is due to the fact that close
to the contact line neither the curvature nor the disjoining pressure is completely
negligible.

Summarizing, it is found that for small contact angles, the droplet increases its width
with time and a linear profile is developed as a result of the competition between
Marangoni and viscous stresses. Only the rear contact line advances asymptotically
with a constant velocity.
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Figure 4. Evolution of the droplet profile with θ = 30◦, A = 10, B =0.01 and h∗ = 0.01. (a):
Quasi-steady droplet motion with constant velocity shown at equal time intervals. The solid
line represents the last profile for t = 30×103. (b): A zoom of the region close to the substrate.

4. Droplet regime: large contact angle
Figure 4(a) shows the displacementof a droplet with θ = 30◦. Contrary to what

we observed for small contact angles, the droplet moves as a whole to a good
approximation keeping its original steady shape. Hence we refer to this as the droplet
regime. Here the effect of the disjoining–conjoining pressure is stronger than in the
previous case and the Marangoni stress induced at the liquid–air interface cannot
change the shape of the droplet. Interestingly, when we observe the region close to
the substrate in detail, we detect that the droplet leaves a constant-thickness thin
film behind the rear front. An example is shown in figure 4(b), which is a zoom of
the region close to the substrate. In this case, the film behind the advancing droplet
attains a thickness of ≈0.01038. The height of this film decreases when either θ or A

is increased.
One of the main features in this regime is that both front and rear move with the

same ‘constant’ velocity. The natural question is how this velocity depends on the
parameters A, B , θ and h∗. On the face of it, five-‘dimensional’ parameters determine
the flow in the droplet regime: μ, τ , h∗,dim , Adim and Udim . However, as mentioned
above, the use of intrinsic scales reduces the number of dimensionless parameters
by two. Thus guided by the form of the constant κ , the natural scales of the steady
problem (Gomba & Homsy 2009), and dimensional analysis, two � groups can be
constructed that lead to the following relationship,

Udimμ

τh∗,dim

= f

(
Adim

√
2(1 − cos θ)

h2
∗,dim

)
. (4.1)

This expression can be easily rewritten in terms of the ‘dimensionless’ parameters A,
B , θ and h∗, leading to the following equation:

U

Bh∗
= f ′

(
A

√
2(1 − cos θ)

h2
∗

)
. (4.2)
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Figure 5. Dependence of U on the problem parameters A, B , θ and h∗. The points
represent 39 different combinations of the parameters, whose values are A = 0.18; 10; 18,
B = 0.002; 0.01; 0.05; θ =30◦; 40◦; 50◦ and h∗ =0.001; 0.005; 0.01; 0.05.

Figure 5 shows the dependence of U on the dimensionless parameter
A

√
2(1 − cos θ)/h2

∗ for several different combinations of the parameters involved.
The plot shows that there is a power law dependence between these quantities given
by

U ∝ Bh∗

(
A

√
2(1 − cos θ)

h2
∗

)0.4

. (4.3)

We currently do not have any theoretical explanation for the power law exponent,
but further research into travelling wave solutions for small B may be instructive on
this point.

Figure 6(a, b) shows the dependence on B of the contact angles at the rear and the
advancing fronts, θR and θA, for two different areas (the contact angles are normalized
to the value they would have for B = 0). For B = 0.002, both θR and θA show a slight
increase from the value corresponding to B = 0. For larger values of B , θA increases
while θR decreases. Notice that for A= 10 (figure 6a), the percentage change of the
contact angle with B is higher than for A= 0.18 (figure 6b).

Concluding this section, for large contact angles the droplet moves at constant speed
while to a good approximation keeping its initial shape, indicating the dominance of
the disjoining–conjoining pressure of the distortion due to the Marangoni flow. At
the same time, a thin constant-thickness film is left behind the droplet. The droplet
moves with a constant velocity which is proportional to B and inversely proportional
to the viscosity, in agreement with experimental results of Brzoska et al. (1993) and
Chen et al. (2005).

5. The transition regime
This regime pertains to intermediate values of θ . In the previous two sections we

show that the thickness profile for small values of θ is determined by Marangoni
stresses while, in the opposite limit of large θ , the disjoining–conjoining pressure
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Figure 6. Contact angles at the rear and advancing fronts, θR and θA, respectively, normalized
to the value of the contact angle for B =0, for two different areas: (a) A = 10 and (b) A = 0.18.

term is responsible for maintaining the initial droplet shape. Intermediate values of
θ correspond to a regime where both Marangoni term and disjoining–conjoining
pressure compete and, accordingly, the behaviour is transient and complex. Figure 7
shows the evolution of the profile for θ = 10◦. The droplet first develops a linear
profile but at a time close to t = 4 × 104, small droplets detach from the rear front.
At the same time, the region connecting the bulk and the front ridge decreases its
thickness, which ultimately produces a break-up at the leading edge. At the end of
the computation, we have a large number of very small droplets in the rear region,
the bulk of the original droplet and a large droplet at the front. It is clear that, in
this regime, the Marangoni and disjoining–conjoining terms compete, the first trying
to keep a straight profile and the second inducing a rupture into smaller cylindrical
droplets.

Figure 8 shows another behaviour, here observed for θ = 16◦, for which the strength
κ of the disjoining–conjoining pressure increases. The droplet immediately breaks up
into two droplets which then travel with nearly constant shape. The rear droplet
adopts a cylindrical shape while the leading one adopts a non-standard shape. After
a transient, the rear droplet travels faster than the leading one.

The occurrence of non-cylindrical shapes does not necessarily appear after a break-
up process. For example, for A= 18 and θ = 18◦, the break-up does not occur, as
shown in figure 9. At the beginning, the droplet seems to evolve toward a break-up
into two droplets, but it ultimately adopts a non-standard shape (with three local
maxima) that travels with a constant velocity.

To summarize, we find that the thermocapillary migration for intermediate contact
angles is very complex and difficult to characterize in a simple fashion. Most of the
cases studied did not yield a steady state or a simple spreading behaviour, but rather
exhibited complicated time dependence and a tendency toward film rupture. As we
will show below, most of the experiments are not in the range of parameters that
results in the intermediate regime. Additionally, there may be differences between
break-ups in two and three dimensions. For these reasons, we leave a detailed study
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Figure 7. Evolution of the droplet profile for θ =10◦ (A =10, B = 0.01 and h∗ = 0.01).

of the break-up for the future when experiments with relatively non-wetting liquids
might justify it.

6. Regime maps
Having discovered and characterized the different regimes,we now study how the

parameters, A, B and h∗, affect which regime may occur. We do this by representing
the different regimes in the θ–A plane, with B as a parameter. Figure 10 shows one of
these maps for B = 0.01. Notice that all three regimes—film, droplet and transition—
can be observed for the range of A studied. Interestingly, due to the fact that the
integral effect of the disjoining pressure on the whole volume is more important
for smaller droplets than for larger ones, the values of θ at which we observe the
transition from film to transition regimes and from transition to droplet regimes are
lower for the smaller values of A. For example, for A= 0.18, the values of the contact
angles which define the boundary between the film–transition and transition–droplet
regimes are θFT ≈ 5◦ and θT D ≈ 7◦, respectively, while the corresponding contact angles
for A= 18 are θFT ≈ 9◦ and θT D ≈ 20◦.

These maps help explain why the droplet regime is the only one reported to date.
The experiments of Chen et al. (2005), for which B ≈ 0.01, A ≈ 0.37, are indicated in
figure 10. This study observed only the droplet regime, in agreement with our regime
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map. Figure 10 also suggests that the highest values of A in experiments of Brzoska
et al. (1993) fall in thetransition regime, but those experiments were performed with
smaller values of B: the more relevant comparison is with figure 11.

Figure 11(a, b) presents the same diagram but for B = 0.05 and B =0.002,
respectively. We can observe that when the value of B is decreased (increased), the
contact angles θFT and θT D reduce (increase) their values. The results for B = 0.002
bring the theory and the experiments of Brzoska et al. (1993) into agreement: the
film regime disappears for small values of A, a result that is consistent with these
experiments (for which 0.002 � B � 0.007), all of which fall in the droplet regime.

We also explored the effect of h∗, solving all the same cases presented in figure 10 but
using h∗ = 0.005. Only for the transition regime do we observe differences (basically in
the number and shape of the detached droplets), and we do not detect any important
change in the values of the contact angles, θFT and θT D , respectively, that define the
boundaries of the film–transition and transition–droplet regimes. We conclude that
in spite of the fact that our numerical values of h∗ are larger than appropriate to a
film of molecular thickness, the simulations capture the different regime maps in a
qualitative way and that they depend more strongly on the other parameters of the
problem.

7. Conclusions
In this paper, we have considered the thermocapillary migration of droplets on

horizontal surfaces. We employed lubrication theory to derive an equation for the
droplet profile that includes the effect of the disjoining–conjoining pressure. The form
of the chosen disjoining–conjoining pressure term admits a non-zero contact angle at
the contact line region. One of the main differences with previous works is that we do
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not assume a constant spreading velocity, but rather we allow the droplet to evolve
its shape in time.

We find that for small contact angles,the droplet continuously increases its width.
The droplet adopts a linear shape in an outer region, a profile that is captured by a
self-similar solution. Expressions for the positions of the rear and leading edges are
derived via a mass balance. In this regime, Marangoni stresses are responsible for the
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linear shape of the thickness profile, the effect of the disjoining–conjoining pressure
being negligible.

In contrast, when the contact angle is relatively large, the droplet approximately
keeps its steady initial shape and moves at a constant velocity. Combining dimensional
analysis and numerical simulations, we find that the velocity follows a power law in
dimensionless variables combining the parameters A, B , h∗ and θ . The expression
for the velocity, given by (4.3), predicts that the droplet speed is proportional to
the temperature gradient imposed on the substrate and inversely proportional to
the viscosity, in agreement with experimental results of Brzoska et al. (1993) and
Chen et al. (2005). It also predicts that the velocity increases with A, as observed
in experiments. Notice that while experiments of Brzoska et al. (1993) present a
linear dependence with R, the experiments of Chen et al. (2005) show a dependence
that goes with R, with  < 1 indeterminate (see figure 4 in Chen et al. 2005). If we
consider a cylindrical cap, in our case the velocity is proportional to R0.8. We think
that the dependence with R varies with the particular fluid employed, so different
disjoining–conjoining pressure models may lead to a different dependence with R, θ

and h∗. In this regime, the values of the apparent contact angles at the contact leading
and rear fronts are found to be dependent on the temperature gradient imposed at
the substrate, that is, with the dimensionless parameter B . For small B , we observe
that both contact angles increase while for larger B , the rear contact angle decreases
while the leading contact angle increases. The relative change is larger for larger
droplets. The Marangoni stress moves the droplet from warmer to colder regions,
but it does not have any important effect on the shape of the thickness profile: the
disjoining–conjoining pressure effect is strong enough to keep the shape of the droplet
fixed.

For intermediate values of contact angle, we observe a transition regime in which
the dynamics are complicated. Marangoni and disjoining pressure effects compete and
a wide number of possible morphologies appear. In this regime, we observe break-up
processes, droplets moving with non-standard shapes and also coalescence. A deeper
study of this regime is needed in order to answer some open questions, for example,
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the conditions under which the break-up occurs and how the volumes of the resulting
droplets are selected.

The occurrence of the three regimes is very sensitive to the values of A and B .
We display our results in a map in the θ–A plane and find that, for a given B , the
limiting contact angle that separates the film-transition and transition-droplet regimes
are smaller for smaller A. Employing the same diagram, but for a lower value of
B , we observe that these limiting contact angles decrease, and the film regime does
not occur even for the smallest contact angle analysed. For large B , the limits move
toward higher values of θ . In spite of the relative simplicity of the model, all these
trends are in agreement with available experiments.

This work was supported by the US DOE through grant number DE-FG02-
05ER15692. JMG gratefully acknowledges the Fulbright Foundation and CONICET
for partial support.
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